Open Access
Issue
J Oral Med Oral Surg
Volume 29, Number 2, 2023
Article Number 22
Number of page(s) 12
DOI https://doi.org/10.1051/mbcb/2023018
Published online 10 July 2023
  1. Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, Liu X, Wu Y, Dong F, Qiu CW, Qiu J. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2021;2:100179. [CrossRef] [Google Scholar]
  2. Turing A. 1995. Computing Machinery and Intelligence (American Association for Artificial Intelligence). [Google Scholar]
  3. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–444. [CrossRef] [PubMed] [Google Scholar]
  4. Eschert T, Schwendicke F, Krois J, Bohner L, Vinayahalingam S, Hanisch M. A survey on the use of artificial intelligence by clinicians in dentistry and oral and maxillofacial surgery. Medicina 2022;58:1059. [CrossRef] [Google Scholar]
  5. Spielman A. The future of oral medicine. Oral Dis 2018;24:285–288. [CrossRef] [PubMed] [Google Scholar]
  6. Ehtesham H, Safdari R, Mansourian A, et al. Developing a new intelligent system for the diagnosis of oral medicine with case‐based reasoning approach. Oral Dis 2019;25:1555–1563. [CrossRef] [PubMed] [Google Scholar]
  7. Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res 2020;99:769–774. [CrossRef] [PubMed] [Google Scholar]
  8. Van Leeuwen KG, de Rooij M, Schalekamp S, van Ginneken B, Rutten MJCM. How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr Radiol 2021 1–7. [PubMed] [Google Scholar]
  9. Lee J-H, Kim D-H, Jeong S-N, et al. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 2018;77:106–111. [CrossRef] [PubMed] [Google Scholar]
  10. Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, Elhennawy K, Schwendicke F. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent 2020;100:103425. [CrossRef] [PubMed] [Google Scholar]
  11. Bas B, Ozgonenel O, Ozden B, Bekcioglu B, Bulut E, Kurt M. Use of artificial neural network in differentiation of subgroups of temporomandibular internal derangements: a preliminary study. J Oral Maxillofac Surg. 2012;70:51–59. [CrossRef] [PubMed] [Google Scholar]
  12. Lu C, Lewis JS, Dupont WD, Plummber WD, Janowczyk A, Madabhushi A. An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival. Mod Pathol 2017;30:1655–1665. [CrossRef] [PubMed] [Google Scholar]
  13. Ariji Y, Fukuda M, Kise Y, et al. Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence. Oral Surg Oral Med Oral Pathol Oral Radiol 2019;127:458–463. [CrossRef] [PubMed] [Google Scholar]
  14. Ekert T, Krois J, Meinhold L, et al. Deep learning for the radiographic detection of apical lesions. J Endod 2019;45:917–922.e5. [CrossRef] [PubMed] [Google Scholar]
  15. Ariji Y, Yanashita Y, Kutsuna S, et al. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol 2019;128:424–430. [CrossRef] [PubMed] [Google Scholar]
  16. Lee J, Kim D, Jeong S. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis. 2020;26:152–158. [CrossRef] [PubMed] [Google Scholar]
  17. Johnston SC. Anticipating and training the physician of the future: the importance of caring in an age of artificial intelligence. Acad Med 2018;93:1105–1106. [CrossRef] [PubMed] [Google Scholar]
  18. Bordage G. Conceptual frameworks to illuminate and magnify. Med Educ 2009;43:312–319. [CrossRef] [PubMed] [Google Scholar]
  19. Uzuner O, Mailoa J, Ryan R, Sibanda T. Semantic relations for problem-oriented medical records. Artif Intell Med 2010;50:63–73. [CrossRef] [PubMed] [Google Scholar]
  20. Yüzbaşıoğlu E. Attitudes and perceptions of dental students towards artificial intelligence. J Dental Educ 2021;85:60–68. [CrossRef] [PubMed] [Google Scholar]
  21. Sur J, Bose S, Khan F, et al. Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: a survey. Imag Sci Dent 2020;50:193–198. [CrossRef] [PubMed] [Google Scholar]
  22. World Medical Association Declaration of Helsinki. JAMA. 2013;310:2191–2194. [CrossRef] [PubMed] [Google Scholar]
  23. Adisa R, Anifowose AT. Pharmacists' knowledge, attitude and involvement in palliative care in selected tertiary hospitals in southwestern Nigeria. BMC Palliative Care. 2019;18:1–3. [CrossRef] [PubMed] [Google Scholar]
  24. Al Rashed WA, Shihah AS, Alhomoud AS, et al. Knowledge, attitude, and practice toward glaucoma and its management among adult Saudi patients. Saudi J Ophthalmol. 2020;34:261. [Google Scholar]
  25. Oh S, Kim JH, Choi S-W, et al. Physician confidence in artificial intelligence: an online mobile survey. J Med Internet Res 2019;21:e12422. [CrossRef] [PubMed] [Google Scholar]
  26. Pinto Dos Santos D, Giese D, Brodehl S, et al. Medical students' attitude towards artificial intelligence: a multicentre survey. Eur Radiol 2019;29:1640–1646. [CrossRef] [PubMed] [Google Scholar]
  27. Keser G, Pekiner FM. Attitudes, perceptions and knowledge regarding the future of artificial intelligence in oral radiology among a group of dental students in Turkey: A survey. Clin Exp Health Sci 2021;11:637–641. [CrossRef] [Google Scholar]
  28. Ranjana V, Gayathri R, Priya VV, et al. Awareness on application of artificial intelligence in medicine among dental students-A survey. Ann Rom Soc Cell Biol 2021; 1137–1153. [Google Scholar]
  29. Fernandes S, Bafna Y. Knowledge Attitude and Practice of Dental Students Towards Artificial Intelligence (AI): A Questionnaire based Survey. https://doi.org/10.37896/jxu16.8/029. [Google Scholar]
  30. Asmatahasin M, Pratap KV, Padma TM, Kalyan VS, Kumar VS. Attitude and perception of dental students towards artificial intelligence. Indian J Basic Appl Med Res 2021;10:305–314. [Google Scholar]
  31. Priyadarshini S, Sharma S, Arish M, Warikoo A, Kalsi R. Determining the factors associated with knowledge and practice regarding artificial intelligence in dentistry among the dental professionals of North India. Asian J Converg Technol 2022;8:41–46. [CrossRef] [Google Scholar]
  32. Swed S, Alibrahim H, Elkalagi NK, Nasif MN, Rais MA, Nashwan AJ, et al. Knowledge, attitude, and practice of artificial intelligence among doctors and medical students in Syria: a cross-sectional online survey. Front Artif Intell 2022;5. [Google Scholar]
  33. Khanagar S, Alkathiri M, Alhamlan R et al. Knowledge, attitudes, and perceptions of dental students towards artificial intelligence in Riyadh, Saudi Arabia. Med Sci 2021;25:1857–1867. [Google Scholar]
  34. Pauwels R, Del Rey YC. Attitude of Brazilian dentists and dental students regarding the future role of artificial intelligence in oral radiology: a multicenter survey. Dentomaxillofac Radiol 2021;50:20200461. [CrossRef] [PubMed] [Google Scholar]
  35. Abouzeid HL, Chaturvedi S, Abdelaziz KM, et al. Role of robotics and artificial intelligence in oral health and preventive dentistry-knowledge, perception and attitude of dentists. Oral Health Prev Dent 2021;19:353–363. [PubMed] [Google Scholar]
  36. Awawdeh M, Dervis H. Artificial Intelligence (Ai) Application in Dentistry: The Knowledge, Concerns and Challenges Of Syrian Dental Care Professionals. https://doi.org/10.2139/ssrn.4017021. [Google Scholar]
  37. Krittanawong C. The rise of artificial intelligence and the uncertain future for physicians. Eur J Intern Med 2018;48:e13–e14. [CrossRef] [PubMed] [Google Scholar]
  38. Inkster B, Sarda S, Subramanian V. An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: real-world data evaluation mixed-methods study. JMIR Mhealth Uhealth. 2018;6:e12106. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.