Open Access
Issue
J Oral Med Oral Surg
Volume 26, Number 2, 2020
Article Number 24
Number of page(s) 6
Section Article original / Original article
DOI https://doi.org/10.1051/mbcb/2020012
Published online 05 June 2020
  1. Lyons A, Osher J, Warner E, et al. Osteoradionecrosis − a review of current concepts in defining the extent of the disease and a new classification proposal. Br J Oral Maxillofac Surg. 2014;52:392–395. [CrossRef] [PubMed] [Google Scholar]
  2. Bulsara VM, Bulsara MK, Lewis E. Protocol for prospective randomised assessor-blinded pilot study comparing hyperbaric oxygen therapy with PENtoxifylline + TOcopherol ± CLOdronate for the management of early osteoradionecrosis of the mandible. BMJ Open 2019;9:e026662. [CrossRef] [PubMed] [Google Scholar]
  3. Poort L, Lethaus B, Böckmann R, et al. Experimental studies on the irradiation of facial bones in animals: a review. Int J Oral Otolaryngol Head Neck Surg 2014;3:113–127. [CrossRef] [Google Scholar]
  4. Soares PBF, Soares CJ, Limirio PHJO, et al. Effect of ionizing radiation after-therapy interval on bone: histomorphometric and biomechanical characteristics. Clin Oral Invest 2019;23: 2785–2793. [CrossRef] [Google Scholar]
  5. Zhang WB, Zheng LW, Chua D, et al. Bone regeneration after radiotherapy in an animal model. J Oral MaxillofacSurg 2010;68:2802–2809. [CrossRef] [Google Scholar]
  6. Clark CL, Strider J, Hall C, et al. Distraction osteogenesis in irradiated rabbit mandibles with adjunctive hyperbaric oxygen therapy. J Oral Maxillofac Surg 2006;64:589–593. [CrossRef] [PubMed] [Google Scholar]
  7. Ma Y, Shen G. Distraction osteogenesis after irradiation in rabbit mandibles. Br J Oral Maxillofac Surg 2012;50:662–667. [CrossRef] [PubMed] [Google Scholar]
  8. Muhonen A, Muhonen J, Minn H, et al. The effects of irradiation and hyperbaric oxygen on bone formation during rabbit mandibular distraction. Arch Oral Biol 2002;47:701–707. [CrossRef] [PubMed] [Google Scholar]
  9. Zhang WB, Zheng LW, Chua DT, et al. Expression of bone morphogenetic protein, vascular endothelial growth factor, and basic fibroblast growth factor in irradiated mandibles during distraction osteogenesis. J Oral Maxillofac Surg 2011;69:2860–2871. [CrossRef] [PubMed] [Google Scholar]
  10. Müller R. Hierarchical microimaging of bone structure and function. Nat Rev Rheumatol 2009;5:373–381. [CrossRef] [PubMed] [Google Scholar]
  11. Donnelly E. Methods for assessing bone quality. Clin Orthop Relat Res 2011;469:2128–2138. [CrossRef] [PubMed] [Google Scholar]
  12. Bouxsein ML, Boyd SK, Christiansen BA, et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Min Res 2010;25:1468–1486. [CrossRef] [Google Scholar]
  13. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating bone quality of evidence and strength of recommendations. BMJ 2008;336:924–926. [Google Scholar]
  14. Yachouh J, Breton P, Roux JP, et al. Osteogenic capacity of vascularized periosteum: an experimental study on mandibular irradiated bone in rabbits. J Plast Reconstr Aesthet Surg 2010;63:2160–2167. [Google Scholar]
  15. Soares PBF, Soares CJ, Limirio PHJO, et al. Effect of ionizing radiation after-therapy interval on bone: histomorphometric and biomechanical characteristics. Clin Oral Investing 2019;23:2785–2793. [CrossRef] [Google Scholar]
  16. Zong C, Cai B, Wen X, et al. The role of myofibroblasts in the development of osteoradionecrosis in a newly established rabbit model. J Cranio Maxillofac Surg 2016;44:725–733. [CrossRef] [PubMed] [Google Scholar]
  17. Muhonen A, Säämaänen AM, Peltomäki T, et al. The effect of irradiation and hyperbaric oxygenation (HBO) on extracellular matrix of the condylar cartilage after mandibular distraction osteogenesis in the rabbit. Int J Oral Maxillofac Surg 2006;35:79–87. [CrossRef] [PubMed] [Google Scholar]
  18. Bléry P, Espitalier F, Hays A, et al. Developement of mandibular osteoradionecrosisin rats: importance of dental extraction. J Craniofac Surg 2015;43:1829–1836. [Google Scholar]
  19. Poort LJ, Ludjage JHB, Lie N, et al. The histological and histomorphometric changes in the mandible after radiotherapy: an animal model. J Craniomaxillofac Surg 2017;45:716–721. [CrossRef] [PubMed] [Google Scholar]
  20. Kudo M, Matsui Y, Ohno K, et al. A histomorphometric study of the tissue reaction around hydroxylapatite implants irradiated after placement. J Oral Maxillofac Surg 2001;59:293–300. [CrossRef] [PubMed] [Google Scholar]
  21. Marx RE. Histomorphometric examination of healing around hydroxylapatite implants in 60Co irradiated bone. Discussion. J Oral Maxillofac Surg 1994;52:172–173. [CrossRef] [Google Scholar]
  22. Bodard AG, Debbache S, Langonnet S, et al. A model of mandibular irradiation in the rabbit: preliminary results. Bull Group Int Rech Sci Stomatol Odontol 2013;52:12–17. [Google Scholar]
  23. Debbache S, Langonnet S, Lafay F, et al. Mise au point d'un modèle expérimental d'irradiation mandibulaire chez le lapin: résultats préliminaires. Med Bucc Chir Bucc 2013;19:143–148. [CrossRef] [Google Scholar]
  24. Campillo VE, Langonnet S, Pierrefeu A, et al. Anatomic and histological study of the rabbit mandible as an experimental model for wound healing and surgical therapies. Lab Anim 2014;48:273–277. [CrossRef] [PubMed] [Google Scholar]
  25. Eppley BL, Connolly DT, Winkelmann T, et al. Free bone graft reconstruction of irradiated facial tissue: experimental effects of basic fibroblast growth factor stimulation. Plast Reconstr Surg 1991;88:1–11. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.