Open Access

This article has an erratum: [erratum]

Issue
Med Buccale Chir Buccale
Volume 16, Number 4, novembre 2010
Page(s) 199 - 208
Section Articles Originaux / Original articles
DOI https://doi.org/10.1051/mbcb/2010039
Published online 16 November 2010
  1. Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen 2006;11 :922–32. [CrossRef] [PubMed] [Google Scholar]
  2. Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 2003;83 :173–80. [CrossRef] [PubMed] [Google Scholar]
  3. Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R. The use of 3-D cultures for high-throughput screening : the multicellular spheroid model. J Biomol Screen 2004;9 :273–85. [CrossRef] [PubMed] [Google Scholar]
  4. Desbaillets I, Ziegler U, Groscurth P, Gassmann M. Embryoid bodies : an in vitro model of mouse embryogenesis. Exp Physiol 2000;85 :645–51. [CrossRef] [PubMed] [Google Scholar]
  5. Carlsson J, Yuhas JM. Liquid-overlay culture of cellular spheroids. Recent Results Cancer Res 1984;95 :1–23. [Google Scholar]
  6. Santini MT, Rainaldi G. Three-dimensional spheroid model in tumor biology. Pathobiology 1999;67 :148–57. [CrossRef] [PubMed] [Google Scholar]
  7. Sutherland RM. Cell and environment interactions in tumor microregions : the multicell spheroid model. Science 1988;240 :177–84. [CrossRef] [PubMed] [Google Scholar]
  8. Sutherland RM, Durand RE. Growth and cellular characteristics of multicell spheroids. Recent Results Cancer Res 1984;95 :24–49. [PubMed] [Google Scholar]
  9. Zhang X, Wang W, Yu W, Xie Y, Zhang Y, Ma X. Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Biotechnol Prog 2005;21 :1289–96. [CrossRef] [PubMed] [Google Scholar]
  10. Torisawa YS, Takagi A, Nashimoto Y, Yasukawa T, Shiku H, Matsue T. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip. Biomaterials 2007;28 :559–66. [CrossRef] [PubMed] [Google Scholar]
  11. Timmins NE, Nielsen LK. Generation of multicellular tumor spheroids by the hanging-drop method. Methods Mol Med 2007;140 :141–51. [CrossRef] [PubMed] [Google Scholar]
  12. Harris SA, Enger RJ, Riggs BL, Spelsberg TC. Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res 1995;10 :178–86. [CrossRef] [PubMed] [Google Scholar]
  13. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 2000;276 :461–65. [CrossRef] [PubMed] [Google Scholar]
  14. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp 1971;5 :117–41. [CrossRef] [Google Scholar]
  15. Wheeler DL, Eschbach EJ, Hoellrich RG, Montfort MJ, Chamberland DL. Assessment of resorbable bioactive material for grafting of critical-size cancellous defects. J Orthop Res 2000;18 :140–48. [CrossRef] [PubMed] [Google Scholar]
  16. Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed 2004;15 :543–62. [CrossRef] [PubMed] [Google Scholar]
  17. Cerruti M, Bianchi C, Bonino F, Damin A, Perardi A, Morterra C. Surface modifications of bioglass immersed in TRIS-buffered Solution. A multitechnical spectroscopic study. J Phys Chem B 2005;109 :14496–505. [Google Scholar]
  18. Tsigkou O, Jones JR, Polak JM, Stevens MM. Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. Biomaterials 2009;30 :3542–50. [CrossRef] [PubMed] [Google Scholar]
  19. Cardoso AK, Barbosa Ade A Jr, Miguel FB, Marcantonio E Jr, Farina M, Soares GD, Rosa FP. Histomorphometric analysis of tissue responses to bioactive glass implants in critical defects in rat calvaria. Cells Tissues Organs 2006;184 :128–37. [CrossRef] [PubMed] [Google Scholar]
  20. Moreira-Gonzalez A, Lobocki C, Barakat K, Andrus L, Bradford M, Gilsdorf M, Jackson IT. Evaluation of 45S5 bioactive glass combined as a bone substitute in the reconstruction of critical size calvarial defects in rabbits. J Craniofac Surg 2005;16 :63–70. [CrossRef] [PubMed] [Google Scholar]
  21. Arcos D, Izquierdo-Barba I, Vallet-Regí M. Promising trends of bioceramics in the biomaterials field. J Mater Sci Mater Med 2009;20 :447–55. [CrossRef] [PubMed] [Google Scholar]
  22. Thomas MV, Puleo DA, Al-Sabbagh M. Bioactive glass three decades on. J Long Term Eff Med implants 2005;15 :585–97. [PubMed] [Google Scholar]
  23. Bielby RC, Christodoulou IS, Pryce RS, Radford WJ, Hench LL, Polak JM. Time- and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng 2004;10 :1018–26. [PubMed] [Google Scholar]
  24. Voiqt W. Sulforhodamine B assay and chemosensitivity. Methods Mol Med 2005;110 :39–48. [PubMed] [Google Scholar]
  25. Friedrich J, Eder W, Castaneda J, Doss M, Huber E, Ebner R, Kunz-Schughart LA. A reliable tool to determine cell viability in complex 3-d culture : the acid phosphatase assay. J Biomol Screen 2007;12 :925–37. [CrossRef] [PubMed] [Google Scholar]
  26. Yamamoto A, Honma R, Sumita M, Hanawa T. Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res A 2004;68 :244–56. [CrossRef] [PubMed] [Google Scholar]
  27. Christodoulou I, Buttery LD, Saravanapavan P, Tai G, Hench LL, Polak JM. Dose-and time-dependant effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J Biomed Mater Res B Appl Biomater 2005;74 :529–37. [PubMed] [Google Scholar]
  28. Jell G, Notingher I, Tsigkou O, Notingher P, Polak JM, Hench LL, Stevens MM. Bioactive glass- induced osteoblast differentiation : a noninvasive spectroscopic study. J Biomed Mater Res A 2008;86 :31–40. [PubMed] [Google Scholar]
  29. Tsigkou O, Hench LL, Boccaccini AR, Polak JM, Stevens MM. Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass composite films in the absence of osteogenic supplements. J Biomed Mater Res A 2007;80 :837–51. [PubMed] [Google Scholar]
  30. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 2001;55 :151–57. [CrossRef] [PubMed] [Google Scholar]
  31. Anderson SI, Downes S, Perry CC, Caballero AM. Evaluation of the osteoblast response to a silica gel in vitro. J Mater Sci Mater Med 1998;9 :731–35. [CrossRef] [PubMed] [Google Scholar]
  32. Kang YM, Kim KH, Seol YJ, Rhee SH. Evaluations of osteogenic and osteoconductive properties of a non-woven silica gel fabric made by the electrospinning method. Acta Biomater 2009;5 :462–69. [CrossRef] [PubMed] [Google Scholar]
  33. Varanasi VG, Saiz E, Loomer PM, Ancheta B, Uritani N, Ho SP, Tomsia AP, Marshall SJ, Marshall GW. Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions. Acta Biomater 2009;5 :3536–47. [CrossRef] [PubMed] [Google Scholar]
  34. Sun J, Wei L, Liu X, Li J, Li B, Wang G, Meng F. Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomater 2009;5 :1284–93. [CrossRef] [PubMed] [Google Scholar]
  35. Darimont C, Avanti O, Tromvoukis Y, Vautravers-Leone P, Kurihara N, Roodman GD, Colgin LM, Tullberg-Reinert H, Pfeifer AM, Offord EA, Mace K. SV40 T antigen and telomerase are required to obtain immortalized human adult bone cells without loss of the differentiated phenotype. Cell Growth Differ 2002;13 :59–67. [PubMed] [Google Scholar]
  36. Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D : spheroids-old hat or new challenge? Int J Radiat Biol 2007;83 :849–71. [CrossRef] [PubMed] [Google Scholar]
  37. Subramaniam M, Jalal SM, Rickard DJ, Harris SA, Bolander ME, Spelsberg TC. Further characterization of human fetal osteoblastic hFOB 1.19 and hFOB/ER alpha cells : bone formation in vivo and karyotype analysis using multicolour fluorescent in situ hybridization. J Cell Biochem 2002;87 :9–15. [CrossRef] [PubMed] [Google Scholar]
  38. Bombonato-Prado KF, Bellesini LS, Junta CM, Marques MM, Passos GA, Rosa AL. Microarray-based gene expression analysis of human osteoblasts in response to different biomaterials. J Biomed Mater Res A 2009;88 :401–08. [PubMed] [Google Scholar]
  39. Howes AL, Chiang GG, Lang ES, Ho CB, Powis G, Vuori K, Abraham RT. The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther 2007;6 :2505–14. [CrossRef] [PubMed] [Google Scholar]
  40. Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 2008;3 :1172–84. [CrossRef] [PubMed] [Google Scholar]
  41. Jones JR, Tsigkou O, Coates EE, Stevens MM, Polak JM, Hench LL. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials 2007;28 :1653–63. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.